Appendix K

SCIENCE, TECHNOLOGY, ENGINEERING, AND MATH (STEM) YOUTH APPRENTICESHIP

ENGINEERING & TECHNOLOGY PATHWAY ENGINEERING DRAFTING (UNIT 3)

Competency 1. Apply engineering principles

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Demonstrate Engineering principles understanding based on *current training and knowledge*
- Comply with specifications, regulations, and codes during the design process

Learning Objectives

- SYSTĚMS, PRINCIPLES, CONCEPTS
- Explain physical principles such as forces, friction, and energy
- Apply fundamental laws and principles such as the laws of conservation of energy and momentum relevant to engineering and technology
- Use the relationships between force, motion, energy, work, power to solve a variety of engineering problems
- Apply scalar and vector quantities as applied to physical systems, such as the relationship between position, velocity, and acceleration
- Calculate the mean, mode, median, and range of a data set DESIGN PROCESS
- Describe what pressures are prevalent in engineering design
- Discuss product specifications and their role in engineering
- · Contrast quality and efficiency as significant factors in engineering
- Identify and quantify the impact of potential failures

Competency

2. Interpret technical drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Interpret technical drawings accurately as needed for job task
- Use appropriate terminology
- Identify basic elements of technical drawings
- Identify lines, views, symbols, and representations on the drawings as applicable
- Interpret dimensions and scale on the drawings as applicable
- Utilize a metric scale to properly read a drawing

Learning Objectives

- Discuss different types of technical drawings
- Define the basic types of lines
- Define and explain the use of lines, views, symbols, dimensions, and scale on engineering technical drawings
- Interpret auxiliary drawing information
- Identify different lines by name, type, order of usage, & application such as object, hidden, center, section, dimension, extension, cutting plane, short break, long break, phantom
- Demonstrate standard view placement practices
- Compare orthographic projections, pictorial/3D (isometric, diametric, trimetric) view, sectional views, auxiliary (oblique, inclined) views, and dimensional views
- Discuss the ANSI and the National CAD standards for engineering document lines
- Define tolerances
- Identify tolerancing symbols in a technical drawing

Competency

3. Use measuring devices accurately

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Choose appropriate instrument or aid for measuring task
- Verify instrument is accurate for calibration if applicable
- Use and/or measure as required
- Read measuring instrument accurately
- Scale proportions accurately
- Apply appropriate formula and units for measurements
- Record measurements using proper symbols
- Clean and maintain instrument(s) as required
- Store instrument(s) properly

Learning Objectives

- List drafting aids and measuring devices commonly used by engineers
- List common measurements used by engineers
- Add and subtract measurements
- Discuss how to convert standard English measures to metric and vice versa
- Explain engineering scale
- Explain the impact of error in measurement
- Predict the effect of error propagation in calculations
- Explain the link between measurement, calculation and data with the correct number of significant digits

Competency

4. Organize databases, files, & drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Select appropriate documents
- Code documents as required
- Save and store drawings and files to appropriate database
- Sort and retrieve drawings and data from databases
- Enter data and edit fields and documents
- Query to extract information from files and documents
- Create reports from queries
- Use appropriate computer codes, formatting, macros, charts, spreadsheets, etc.
- Verify data prior to entry/storage

Learning Objectives

- Define basic database terms such as database, field, record, query, table, etc.
- Identify the various types of data and documents stored in your companies database management system
- Discuss the access and responsibilities you will have for managing engineering records and documents

Competency

5. Reproduce documents & plans

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain documents or plans
- Remove any staples if hard copy
- Save copies to computer storage devices
- Operate copy machines
- Operate printers, plotters, and scanners
- Number copies as required
- Document copies made

Learning Objectives

- Explain the purpose of copy control and document numbering systems in engineering
- Explain the size of drawings to standards
- Compare ISO to U.S. customary drawing sizes
- Define aspect ratio and how it applies to drawing sizes and copying
- Describe how to operate the computer database storage system, copy machine, printer, scanner, etc. at your facility

Competency

6. Use engineering drafting software

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Access & use appropriate file management to search, create, copy, edit, and save drawing files
- Execute application software
- Demonstrate view use in CAD
- Retrieve or create drawings
 - Access predefined drawing setup
 - Import/export drawings from/to various graphic formats
 - Convert an existing hard copy drawing to an electronic format
- Draw or modify drawings
 - Utilize drawing management standards
 - Set up plot parameter
 - Select appropriate scale
 - Utilize various coordinate systems
 - Apply appropriate naming conventions, line types, and symbol/object management to drawing
 - Apply appropriate notes and/or leaders to drawing
 - Apply appropriate lettering, fonts, line thickness and type
- Check drawing
- Maintain drawings in the file management system

Learning Objectives

- Explain the purpose, principle, and advantages of Computer-Aided Drawing (CAD)
- Compare cost, advantages, and disadvantages of CAD versus Manual drawing
- Compare types of CAD
- Identify drafting references, handbooks, vendor's product catalog, and other related appropriate standards and how they are used in engineering drafting
- List appropriate engineering design standards used by your facility
- Identify the hardware and software used at the CAD workstations in your facility
- Discuss common CAD system variables used in engineering
- Describe the feature manager design tree schematic for the CAD software used in your facility
- Compare symbols, text based information, and libraries in the CAD software used in your facility
- Discuss CAD plotting guidelines

Comments:

Science, Technology, Engineering, & Math (STEM) – Appendix K Engineering & Technology Pathway: Engineering Drafting (Unit 3)

Competency

7. Develop one-view drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use engineering drafting software OR draw manually
- Select proper view
- Draw geometric shapes such as circles, polygons, ellipses, parabola, triangles of various angles, tangent lines, and arcs as needed
- Identify types of lines to be used
- Determine and utilize line precedence
- Construct a one-view drawing
- Show hidden features and centerlines as required
- Complete title block by selecting lettering style and size
- Apply proper thickness to all lines
- Check drawing
- Label and save to appropriate project family

Learning Objectives

- Determine the front view for a given object
- Explain how an oblique view of simple geometric solids differs from an isometric view
- Identify common geometric shapes and forms by name
- List formulas used in geometric constructions
- Calculate the area of simple geometric shapes
- Explain how to draw one-views and geometric constructions

Competency

8. Develop 2D (orthographic) view drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use engineering drafting software OR draw manually
- Select proper views
- Identify types of lines to be used
- Determine and utilize line precedence
- Construct an orthographic drawing
- Show hidden features and centerlines as required
- Complete title block by selecting lettering style and size
- Apply proper thickness to all lines
- Check drawing
- Label and save to appropriate project family

Learning Objectives

- Explain the alphabet of lines for drawing
- Explain the three dimensions and how they are represented for width, depth, and height
- Describe projection rules to create 2D sketches of 3D objects
- Define orthographic view and its purpose
- Compare types of orthographic views
- Discuss the line types used in orthographic views
- Explain how orthographic projections are used in engineering drawings
- Explain how to draw orthographic views
- Explain how an oblique view of simple geometric solids differs from an isometric view

Competency 9. Develop 3D view models

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use engineering drafting software OR draw manually
- Select proper view
- Lay out view corner
- · Identify lines to be used
- Determine and utilize line precedence
- Draw 3D view models
- Show hidden features and centerlines as required
- Complete title block by selecting lettering style and size
- Apply proper thickness to lines
- Check drawing
- Label and save to appropriate project family

Learning Objectives

- Compare orthographic to pictorial (3D) views
- Describe the types of pictorial (3D) views
- Explain how the viewing direction for a pictorial drawing is chosen
- Explain how to draw pictorial (3D) views
- Compare solid modeling to surface modeling
- Understand and compare 3D features that add and remove geometry including extrude, fillet, shell, revolve, sweep, loft, pattern features

Competency

10. Prepare auxiliary views

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use engineering drafting software OR draw manually
- Select proper auxiliary plane
 - Inclined
 - Oblique
- Prepare auxiliary drawing
- Complete title block by selecting lettering style and size
- Apply proper thickness to lines
- Check drawing
- Label and save to appropriate project family

Learning Objectives

- Define the purpose of auxiliary views
- Compare auxiliary views to one-view, section, orthographic, and pictorial (3D) views
- Explain why auxiliary views are considered special orthographic views
- Compare types of auxiliary views
- Describe how auxiliary views are used in engineering design drawings
- Explain how to draw auxiliary views

Competency

11. Prepare section views

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use engineering drafting software OR draw manually
- Select proper section view
- Prepare section drawing
- Complete title block by selecting lettering style and size
- Apply proper thickness to lines
- Check drawing
- Label and save to appropriate project family

Learning Objectives

- Define the purpose of section views
- Compare section views to orthographic and pictorial views
- Compare types of section views
- Define the "cut line"
- Describe how section views are used in engineering design drawings
- Explain how to draw section views

Competency

12. Dimension drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use engineering drafting software OR draw manually
- Select views to be dimensioned
- Dimension views to standard
 - o Draw dimension lines
 - Dimension views using appropriate style of dimensioning (coordinated, linear)
- Continue until all features have been dimensioned
- Dimension complex shapes when appropriate (e.g., spheres, cylinders, tapers, pyramids)
- Apply appropriate line thickness and type to dimension, extension, and center lines
- Check drawing

Learning Objectives

- Define proportion
- Explain engineering scale
- Describe how scales are indicated on technical drawings
- Define dimensioning in engineering
- Discuss the common rules for engineering dimensioning
- Explain the relationship between design intent and dimensioning
- Define driven and driving dimensions
- Define ordinate dimension
- List common standards for dimensioning at your worksite
- Discuss the basic parts of a dimension
- List common symbols used in dimensioning
- Identify and dimension fillets, rounds, diameters, chamfers, holes, slots, and screw threads in orthographic projection drawings
- Explain the rules that are associated with the application of dimensions to multiview drawings
- Identify and explain the difference between general tolerances, limit dimensions, unilateral, and bilateral tolerances
- Differentiate between clearance and interference fits

Competency

13. Apply lettering & basic annotation to drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use engineering drafting software OR draw manually
- Add lettering
- Draw dimension and extension lines
- Apply adequate drawing notations
- Use appropriate abbreviations
- Apply finish marks
- Check drawing

Learning Objectives

- Explain the importance of standardized lettering on engineering design documents
- Discuss common standards to use in lettering
- Discuss when to use dashed lines
- Describe general rules of the use of line weights
- Define annotation
- Explain the purpose of engineering annotations on technical drawings
- List common abbreviations used in annotations in engineering

Competency

14. Check, revise, & record drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

CHECK

- Obtain all material (catalogs, calculations, references) pertaining to drawn item
- Check dimensioning, tolerances and references to other drawings
- · Check for complete calculations and dimensioning on all required documents
- Check material specifications are given in detail
- Check that all necessary drawing views are included
- Check clearances and interference between moving and adjacent parts
- Check the parts list on assembly drawings for sizes, catalog information, material, etc.
- Check appropriate unit of scale is indicated REVISIONS
- Review drawing revision (change) procedures
- Identify drawing to be modified
- Use engineering drafting software OR draw manually
- Make modifications to drawing
- Construct a revision table on drawing
- Record changes properly on revision table
- Apply appropriate line thickness and type
- Check revised drawing
- Label and save to appropriate project family RECORD
- Number all view drawings and supporting documents as required
- · Document all checks and revisions as required by facility

Learning Objectives

- List criteria and conditions to evaluate when reviewing technical drawings at your facility
- Compare how drawing changes are made and tracked on CAD and/or manual drawings
- Explain how drawing revisions are tracked to other connected technical documents and materials specifications documents
- Discuss the impact on resources of revisions to completed plans

Competency

15. Participate on an engineering project

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review the scope and phases of the design project with worksite professional
- Participate in the following project team activities to develop and implement the engineering project plan as able
 - o Identify customer requirements
 - Identify design specifications
 - Research design constraints and criteria
 - o Identify possible design solutions with team
 - Finalize design criteria and parameters
 - Plan development process
 - Evaluate project requirements
 - Estimate required resources and budget
 - Estimate time requirements
 - o Identify interdependencies
 - o Identify critical milestones
 - Create model/prototype
 - Test prototype
 - Refine prototype
 - o Coordinate project steps with other project/departments
 - Track critical milestones
 - Track changes to engineering plans and costs
 - Track progress of project
- Periodically review plan activities completed and their results

Learning Objectives

- Define the term engineering design
- Explain the elements and steps of the engineering design process
- Describe design constraints, criteria, and trade-offs in regard to variety of conditions (e.g. technology, cost, safety, society, the environment, time, human resources, manufacturability)
- Identify the steps of a product's lifecycle
- · Explain why teams of people are used to develop solutions to design problems
- Describe the use of Gantt and flow charts to manage the various phases of a design project
- Discuss product specifications and their role in engineering
- · Contrast quality and efficiency as significant factors in engineering
- Identify and describe estimation techniques
- Classify costs (e.g., direct and indirect, fixed and variable, methods and standards) **Comments:**

Science, Technology, Engineering, & Math (STEM) – Appendix K Engineering & Technology Pathway: Engineering Drafting (Unit 3)