Appendix M

SCIENCE, TECHNOLOGY, ENGINEERING, AND MATH (STEM) YOUTH APPRENTICESHIP

ENGINEERING & TECHNOLOGY PATHWAY CIVIL ENGINEERING (UNIT 5)

Competency 1. Apply structural & building principles

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

- Performance will be successful when learners:
- Demonstrate Structural and Building Construction principles understanding based on *current knowledge and training*
- Comply with specifications, regulations, and codes during the design process

Learning Objectives

STRUČTURAL

- Define a structure
- Explain multidirectional forces applied to structures
- Identify categories of loads acting on structures
- Explain how load-bearing factors are considered in structural design
- Describe the physics of structures to bear loads via walls, columns, and beams
- Explain the characteristics of structural beams, cables, trusses, and other structural forms BUILDING & CONSTRUCTION
- Recognize how construction skills can aid those in a civil engineering role
- Describe the common processes used in the following construction processes:
 - o Steel welding
 - Carpentry
 - Plumbing
 - \circ Roofing
 - Walls & insulation
 - Power generation
 - Highway & road construction
 - Skyscraper construction

Competency 2. Interpret civil engineering technical drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Interpret civil engineering technical drawings accurately as needed for job task
- Use appropriate terminology
- Identify basic elements of civil engineering technical drawings
- Identify lines, views, symbols, and representations on the drawings as applicable
- Interpret dimensions and scale on the drawings as applicable
- Utilize a metric scale to properly read a drawing

Learning Objectives

- List types and purposes of engineering technical drawings
- Describe the common conventions of civil engineering technical drawings for such things as layout, terminology, interpretation, appearance, size, etc.
- Compare standard views required for civil engineering technical drawings such as multiview, section, detail schedules, etc.
- Identify structural symbols
- Identify site water supply and drainage symbols
- Identify electrical systems connection symbols
- Identify land contour and use symbols
- Explain how site and system design changes are indicated and tracked on civil engineering project plans
- Identify welding joints and welding terms & symbols

Competency 3. Research code & site requirements

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review the civil engineering plan with the worksite professional
- Identify site location, building systems, and structures designated in the plan
- Consult with customers, architects, construction professionals, landscape architects, environmental scientists and/or government officials
- Determine categories of applicable codes required by site, systems, and structures
- Locate resources to conduct code and site research
- Look up codes, zoning ordinances and regulations to determine the applicable requirements for a project
- Review research with worksite professional

Learning Objectives

- Describe the resources and process to be followed to research required codes and site restrictions at your facility
- List sustainable building principles and how to apply them to civil engineering projects
- Site
 - Explain general environmental codes and requirements for a civic project
 - Discuss the need to prevent/control wind, water erosion and/or flood plain analysis in land development and construction
 - Interpret and explain code requirements and constraints as they pertain to the installation of services and utilities
- Structures
 - Explain the purpose of building codes
 - Identify the national codes typically used in the United States and know who is responsible for determining which code is applied to the process
 - Recognize the potential dangers of built structures, particularly structures that do not follow code
 - Define easement, buffer area and setback as they relate to local codes and construction sites
 - Classify a building according to its use, occupancy, and construction type using International Building Codes
 - Discuss the Wisconsin energy code and code requirements
 - List common building codes that apply to areas such as soil, footing, windows, foundation, ventilation, roofing, masonry, drainage, fire prevention, etc.
 - Discuss the difference between habitable and non-habitable spaces
 - Analyze risks associated with natural disasters including wind, earthquake, fire and floods, and design

Comments:

Competency 4. Conduct site analysis with team

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Identify the boundaries of a property based on its legal description
- Visit site to gather information pertinent to the viability of a project on the site
- Participate in surveying to lay out installations and establish reference points, grades, and elevations to guide construction
 - Take measurements of structures, distances, length, width, height, perimeter, and area
 - o Determine elevations and contour lines
 - Establish a point of known elevation for a project
 - Read gauges and measurement instruments accurately
 - Document measurements accurately
- Schedule or conduct land surveys
 - Arrange for evaluation of basic service & utility systems needs including service capacity, service entrance, meter base, and distribution panel locations
 - Arrange for geological and geophysical investigations
 - Obtain soil samples & send for analysis
 - Arrange studies of water & utility needs
 - o Arrange studies of air, water and solid waste pollution assessment
 - Conduct studies of traffic patterns or environmental conditions to identify engineering problems and assess the potential impact of projects
 - Arrange topographical surveys

Learning Objectives

- Describe criteria for building site selection
- Discuss the impact of zoning in site selection
- Explain how to identify the boundaries of a property based on legal description
- Explain how maps and aerial photos are used in site determination and measurement
- Explain how property lines, utilities, building line, setback, building corners, and elevation are indicated in land maps
- · Explain general survey methods used to obtain site measurements
- Explain how to locate and identify an elevation level
- Describe how elevation reference points and footing grades are established
- Discuss how GIS (Geographic Information Systems), GPS (Global Positioning Systems), and lasers are used to measure sites
- Identify site factors which affect the layout of a site and design of a structure
- Identify climatic and geographic criteria that impact the civil engineering project
- Explain the importance of the location and accessibility of the structure to the property **Comments:**

Competency

5. Assist to compile & analyze site measurements & other data

Performance Standard Condition

Competence will be demonstrated

- at the worksite
- while assisting a worksite professional

Performance Standard Criteria

Performance will be successful when learners:

- Obtain survey information on a site from documented resources and/or survey measurements
- Obtain site analysis information from documented resources and/or site testing
- Identify measurements and elevations from site
- Collect data from all surveys, testing and analyses completed
- Analyze measurement, service, utility, zoning & coding, and ecosystem data
- Evaluate site feasibility with civil engineering project team
- Document site analysis and feasibility decision

Learning Objectives

- Determine environmental impacts of civil engineering project sites
- Describe how to determine the most suitable foundation for a proposed structure based on the site constraints
- Discuss service and utility requirements
- Discuss criteria and constraints to layout energy and utility systems for a civil engineering project
- Explain how the United Soil Classification System designation determines soil characteristics important to the design and construction of a building on the site
- Describe the impact of passive energy, sustainability and landscaping on site selection
- Discuss common methods for site preparation
- Explain the process for demolition of old structures prior to repair or new construction

Competency 6. Research structural requirements

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain/contact appropriate resources for researching structural requirements and efficiency
- Analyze what structural load the site can bear
- Research structural constraints such as
 - o Forces, stress, shear, inertia, and moments acting on a structure
 - Statics
 - Equilibrium
- Use graphical and mathematical analysis to identify structural requirements
- Review research and conclusions with worksite professional
- Document structural requirements as required

Learning Objectives

- Force & Statics
 - Define force, shear, statics, and moments
 - o Identify forces acting on the object in a diagram
 - o Explain transmissibility of forces
- Analyze forces applied to structures
- Determine the forces in each member of a truss
- Determine the forces in each member of a frame
 - Review the concepts of tension and compression and how they relate to statics
- Stress & Shear
 - o Define stress, sheer stress, bending stress, combined stress
 - Identify principle stresses on an object
 - Identify the basic stress and vibration equations
 - o Determine shear and moment forces in a diagram
 - o Define torsion
 - o Examine the distribution of stress in an object subjected to bending moments
- Strain
 - $\circ \quad \text{Define strain} \quad$
 - Explain relationship between stress and strain
- Inertia
 - o Define moments of inertia
 - Explain the use of standard structural shape tables
 - o Define the purpose and use of the section modulus
- Equilibrium
 - Define equilibrium
 - o Use equations of equilibrium to calculate unknown forces

- Math Analysis
 - Describe common units of measure used in engineering

 - Explain number rounding rules
 Review the laws of sine, cosine and tangent

Competency 7. Assist to create materials specifications

Performance Standard Condition

Competence will be demonstrated

- at the worksite
- while assisting a worksite professional

Performance Standard Criteria

Performance will be successful when learners:

- Research structural requirements
- Utilize appropriate reference handbooks
- Test selected materials if needed
- Compile materials testing results if applicable
 - Identify strength
 - o Identify stress/strain relationships
 - o Identify continuity, ferrous metal, hardness, and flexure
- Compute materials stress factors
- Select structural and construction materials and assemblies that meet project specifications
- Use appropriate combinations of building materials and components that satisfy the requirements of the civil engineering project
- Review research, testing, and conclusions with worksite professional
- Select materials to fit design specifications with worksite professional
- Document material specification research as required
- Prepare materials specifications documents

Learning Objectives

- Classify and describe the typical physical and chemical characteristics of metals, alloys, ceramics, glass, polymers and composites
- Explain typical physical & chemical properties considered for materials used in civil engineering
- Explain how to conduct typical materials tests for strength, stress/strain relationships, hardness, flexure, etc.
- List common calculations completed to determine materials stress factors
- Identify the four most common materials used in the construction of structures: wood, steel, masonry, and concrete
- Explain criteria used for building materials selection
- Describe applications and restrictions pertaining to the use of construction materials
- Discuss the use of sustainable construction materials and products
- Compare wood and steel frame construction requirements
- Compare typical foundation materials and when each is preferred
- Compare common framing materials and when each is preferred
- Cite typical floor materials
- Distinguish between control, construction, and isolation joints

Comments:

Competency 8. Design site structure(s)

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- · Review site analysis and structural requirements with worksite professional
- Calculate the structural efficiency of a structure
 - Compute load requirements
 - Determine loads using load tables and appropriate mathematics
 - Trace a gravity load imposed on a structure to the ground through all structural elements that contribute to supporting the load
 - o Analyze simply supported beams to determine maximum shear and bending moment
 - Calculate moment of inertia of structural members
 - o Calculate the location of the center of gravity for a rigid body
 - Complete other engineering calculations
 - Compute grade requirements
 - o Estimate the amount of cut and/or fill necessary to build a structure
 - o Compute impact of site development on water drainage
 - Compute water pressure and water flow rates
 - Evaluate whether structures will be able to withstand earthquakes, wind, gravity, snow and other natural forces
- Design structural elements as applicable to the civil engineering project
 - Design the foundation, framing, supports, floor, walls, roof as applicable to required structures
 - Design a spread footing for a given loading condition

Learning Objectives

- Discuss reasons for structural failure
- Explain how load-bearing factors are considered in structural design
- Describe the physics of structures to bear loads via walls, columns, and beams
- · Explain how to perform common engineering calculations for such characteristics as
 - Fill needed
 - o Drainage
 - Water Pressure and head loss
 - Structural efficiency
 - Bend allowances
 - o Loads
 - Critical load on a column
 - o Stress/strain
 - Statics
 - Thermal Dynamics such as contraction, expansion, deflection
- Foundation

- o List common foundation types and describe their use
- Define cantilever
- Framing & Walls
 - o Identify common components of a framing system
 - Distinguish among fixed, free, and pinned columns
 - Examine beam design
 - Understand what factors provide strength in a beam
 - Identify the forces that bend a beam
 - Compare common wall systems
 - Distinguish between bearing and non-bearing walls
- Roof
 - Compare common roof systems
 - Define truss
 - Identify basic truss types
 - o Identify and explain framing terms common to both conventional and trussed roofs

Competency 9. Draw a working site plan

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Compile site measurements & other analysis data
- Review site analyses data and dimensions of site layout
- Select size and scale for plan
- Use engineering drafting software OR draw manually
- Identify parcel features
 - Indicate existing ground features on drawing (e.g., utilities, contours, landscape features, etc.)
 - o Indicate boundaries, easement, buffer areas, and established setbacks of site
 - Draw existing structures
 - Locate and identify bench mark and elevation level
- Indicate modifications of any existing site elements
 - Draw proposed contour lines and indicate any new grade elevations
- Design site structure(s)
- Place proposed structure(s) on site with favorable orientation considering site-specific information
 - Draw utility lines and connections
 - Incorporate required site elements such as power systems, water supply & drainage, sewage systems for roads, airports, dams, bridges and other structures
 - Draw additional construction extending beyond structure(s) (e.g., driveways, sidewalks, roadways, proposed utilities, etc.)
 - Draw landscaping elements
- Estimate the amount of cut and/or fill necessary to build structure(s)
- Estimate the increase in storm water runoff from a site
 - Apply Low Impact Development techniques to reduce the impact of development on the storm water runoff quantity and quality
- Indicate scale of drawing and view title
- Indicate north arrow
- Check drawing

Learning Objectives

- Interpret factors that influence site plan
- Describe the process to draw a site plan
- List and identify site plan abbreviations
- Explain the purpose of contour lines
- Describe how choice of structure placement on site relates to energy, utility, sanitation, and drainage requirements

- Classify a roadway, bridge, dam, airport according to its level of use
- Explain the information and calculations needed to plan for a roadway, bridge, dam, airport design
- Discuss how to design appropriate pedestrian access, vehicular access, and parking for a commercial site
- Explain how common site and system designs incorporate energy conservation techniques
- Compare water waste management types
- Discuss issues of storm water run-off
- · Estimate the increase in storm water runoff from a site
- Explain Low Impact Development techniques to reduce the impact of development on the storm water runoff quantity and quality

Competency

10. Construct a Bill of Materials

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review the working site plan with worksite professional
- Utilize appropriate reference handbooks
- Convert civil engineering drawing scale to full dimensions for the project
- Calculate the required materials needed
- Select materials and assemblies that meet project specifications
- Use appropriate combinations of materials and components that satisfy the requirements of the construction process

Learning Objectives

- Explain how to assign numbers to materials required for construction
- Describe the calculations used to calculate the amount of materials needed
- Explain criteria used for construction materials selection
- Discuss the use of sustainable materials and processes

Competency

11. Assist to create a project plan

Performance Standard Condition

Competence will be demonstrated

- at the worksite
- while assisting a worksite professional

Performance Standard Criteria

Performance will be successful when learners:

- Review the civil engineering project, project instructions, and specifications requirements with worksite professional
 - o Identify the engineering structure/process to be designed
- Research codes & site requirements to determine the applicable requirements
- Identify the criteria and constraints of the project to be designed
- Brainstorm possible solutions to meet project specifications with engineering team
- Identify & plan project requirements with the civil engineering team
 - o Identify critical features on the project
 - o Identify the critical milestones
 - o Develop detailed programs for the construction process
 - Develop detailed programs for the coordination of site activities
- Analyze and interpret reports on loading, labor, and materials
- Research structural requirements and create materials specifications documents
- Draw working site plan
- Design site structures(s)
- Construct a Bill of Materials
- Prepare cost estimates
- Verify site plan with worksite professional
- Obtain bids and prepare contract documents
- Obtain approvals and permits from relevant authorities
- Assist to conduct public surveys and hold public forums
- Document project plan as required
- Modify technical drawings and plans as required
 - Review drawing revision (change) procedures
 - Construct a revision table on drawing
 - Record changes properly

Learning Objectives

- Compare civil engineering to other types of engineering and architects
- Compare types of civil engineering specialties
- Discuss the role of the civil engineer in project design and construction
- List common research strategies used by civil engineers approaching a project
- Explain criteria and considerations when reviewing loading, labor, and materials reports
- · List common documents associated with civil engineering projects
- Explain how to generate a cost estimate for a civil engineering project

- Explain how drawing revisions are tracked to other connected technical documents and materials specifications documents
- Discuss the impact on resources of revisions to completed plans
- Explain the purpose of contracts
- List common contractors employed on civil engineering projects
- Describe the engineering bid process
- Discuss how deeds, environmental impact statements, right of way descriptions, and permits impact project design and implementation

Competency

12. Assist to coordinate project activities

Performance Standard Condition

Competence will be demonstrated

- at the worksite
- while assisting a worksite professional

Performance Standard Criteria

Performance will be successful when learners:

- Review project plans with civil engineering team periodically
- · Assist to monitor activities associated with the project plan and critical milestones
- Communicate regularly with project managers and construction crew
- Organize the delivery of materials and equipment needed
- Review and record information for reports on productivity, quality, and performance

Learning Objectives

- Discuss common critical milestones in typical civil engineering projects
- Explain how civil engineers monitor site activities
- Discuss criteria and considerations when organizing construction building, materials and equipment
- Describe typical reports and measures taken to indicate productivity and performance at a civil engineering project site

Competency

13. Apply quality concepts to project

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Apply quality concepts/standards at all stages of civil engineering design and project
- · Follow written standards and procedures for all protocols and troubleshooting
- Communicate progress at each step of process
- Ensure decisions are justified with data
- Coordinate and monitor project activities
- Periodically inspect civil engineering projects
- Document errors
- Evaluate errors for corrective actions taken
- Document all research, design, testing, and project activities
- Follow the process for change control of design, process and final product
- Verify project is within specifications, contract terms and regulations

Learning Objectives

- Discuss the concept of quality assurance
- Explain key features of a quality assurance system
- Compare quality assurance to quality control
- Define ISO 9000
- Explain the importance of documentation
- Discuss the importance of change control
- Identify types of changes that are typically made in a civil engineering project
- Define risk analysis
- Discuss factors considered in risk/benefit analysis